

金红石相二氧化钛表面吸附氢气的微观机制与 光学特性

霍雅洁¹,罗磊²,岳远霞²,朱洪强^{2*} ¹重庆移通学院数理教学部,重庆401520; ²重庆师范大学物理与电子工程学院,重庆401331

摘要采用基于密度泛函理论体系下的第一性原理平面波超软赝势方法,研究了金红石相二氧化钛[TiO₂(110)]表面吸附氢气(H₂)的微观机制,计算了TiO₂表面的吸附能、态密度、电荷布局和光学性质的变化。结果表明:单碳(C)、单钼(Mo)以及C、Mo共掺杂的金红石相TiO₂(110)表面均容易吸附H₂,吸附方式属于化学吸附。掺杂后,禁带中形成的杂质能级可以诱导光生电子与空穴的分离,为电子在禁带中的跃迁提供"阶梯",改善了TiO₂表面的光学性质,在可见光380~780 nm范围内C、Mo共掺,单Mo掺杂和单C掺杂材料的光学性能依次降低。C、Mo共掺时,TiO₂表面的吸收系数和反射率峰值较未掺杂时分别提高了约5倍和6倍。本工作加深了人们对TiO₂表面吸附H₂的微观机制的理解,利用掺杂方法改善了材料的光学性能,为TiO₂在H₂传感器中的应用提供了理论支持。

关键词 原子与分子物理学;氢气;密度泛函理论;二氧化钛;吸附 中图分类号 O469 文献标志码 A

DOI: 10.3788/AOS202242.2202001

Microscopic Mechanism of Hydrogen Adsorption on Rutile Titanium Dioxide Surface and Its Optical Properties

Huo Yajie¹, Luo Lei², Yue Yuanxia², Zhu Hongqiang^{2*}

¹Department of Mathematics and Physics, Chongqing College of Mobile Communication, Chongqing 401520, China;

²College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China

Abstract This paper studies the microscopic mechanisms of H_2 adsorption on the rutile TiO₂ (110) surface by the firstprinciple plane-wave ultrasoft pseudopotential method based on density functional theory. The changes in the adsorption energy, density of states, distribution of charges, and optical properties on the TiO₂ surface are calculated. The experimental results indicate that the rutile TiO₂ (110) surfaces doped with C, Mo, and C-Mo separately can easily adsorb H_2 in the way of chemical adsorption. After doping, the impurity level formed in the forbidden band can induce the separation of photogenerated electrons and holes. This provides a "step" for electron transitions in the forbidden band and improves the optical properties of the TiO₂ surface. In the visible light range of 380–780 nm, the optical performance of C-Mo co-doping, Mo doping, and C doping materials decreases in turn. The absorption coefficient and reflectance peak of the TiO₂ surface doped with C-Mo are increased by about 5 times and 6 times, respectively, compared with those of the undoped one. This study deepens the understanding of the microscopic mechanism of H₂ adsorption on the TiO₂ surface and improves the optical properties of the material by using the doping method, which provides theoretical support for the application of TiO₂ in hydrogen sensors.

Key words atomic and molecular physics; hydrogen; density functional theory; titanium dioxide; adsorption

基金项目: 重庆自然科学基金(cstc2019jcyj-msxmX0560)、重庆师范大学校级基金(21XLB050)

通信作者: *20132013@cqnu. edu. cn

收稿日期: 2022-03-22; 修回日期: 2022-05-13; 录用日期: 2022-05-23

氢气(H₂)作为一种理想、高效、清洁的新型能源, 是未来替代化石能源的最佳选择之一^[1-3]。但是H₂作 为一种无色、无味、易燃烧的气体,具有易爆炸的特点。 当空气中H₂的体积分数达到4%以上(4.65%~75%) 时,极易发生强烈爆炸。传统的电阻型气敏传感器的 工作温度高、选择性和稳定性较差,不利于对低于爆炸 极限的氢气含量进行及时可靠的检测和报警。为了保 障H₂能源在生产、储存、运输和使用过程中的安全,研 发安全稳定且高性能的H₂传感器来检测H₂泄漏以及 H₂含量已成为当下的热点问题^[47]。

二氧化钛(TiO₂)以金红石相(禁带宽度为 3.0 eV)、锐钛矿相(禁带宽度为 3.2 eV)和板钛矿相 (禁带宽度为 3.3 eV)三种形式存在于自然界中^[8]。 TiO₂具有物理化学性质稳定、催化性能强、无毒等优 点,被广泛应用在气敏传感、光催化、废水处理、化工、 电子等领域^[9+10]。虽然已有大量科研人员对水(H₂O)、 氨气(NH₃)、甲烷(CH₄)、硫化氢(H₂S)等气体在TiO₂ 表面的吸附过程进行了研究^[11-14],但是关于TiO₂的氢 气传感特性以及提高TiO₂材料气敏特性的研究相对 比较缺乏。因此,本文采用基于密度泛函理论(DFT) 体系下的第一性原理平面波超软赝势方法,运用 CASTEP软件模拟计算H₂在TiO₂表面吸附的微观过 程,计算吸附优化后TiO₂表面吸附H₂的规律及光学性 第 42 卷 第 22 期/2022 年 11 月/光学学报

质,为制备出基于TiO₂材料的氢气传感器提供理论 支持。

2 模型构建与计算方法

金红石相 TiO₂属于空间群为 P42/MNM 的四方 晶系结构。文献报道金红石相TiO₂的(110)面能量最 低,且终止原子为二配位氧原子(O_x)的表面最为稳 定^{15]},如图1(a)所示。采用CASTEP软件基于DFT 体系下第一性原理进行计算。考虑到范德瓦耳斯力、 色散相互作用、长程电子关联效应等影响,采取DFT-D函数与广义梯近似(GGA)下 PBE(Proton Balance Equation)相组合的方式进行几何结构优化,使计算结 果更贴近于实际情况;运用平面波超软赝势方法,离子 势用赝势替代描述电子与离子实的相互作用;Kohn-Sham 方程和能量泛函采用自洽求解^[16]。参与计算的 价电子分别为H 1s¹、O 2s²2p⁴、Ti 3d²4s²、C 2s²2p²和 Mo 4d⁵4s¹; 倒易空间平面波截断能设置为 E_{cut} = 340 eV,自洽计算的收敛精度设置为2×10⁻⁶ eV,原子 力收敛精度设置为2×10⁻² eV/Å,原子内应力小于 0.1 GPa, 第一布里渊区为 3×5×2 分格; 构建了 2× 2×3的超晶胞共9层原子的模型,底层原子固定,表面 原子弛豫。为了避免层间相互作用的影响,Z轴方向 构建了10Å真空层。经几何优化后,TiO2表面的终止 原子仍为O_{2c},底层原子结构无明显改变;晶格参数 a=4.594 Å, c=2.959 Å, 与实验值相符^[17], 说明构建 的模型符合实际情况,如图1(b)所示。

图1 优化前后金红石相TiO₂(110)表面原子结构。(a)表面优化前;(b)表面优化后

Fig. 1 Atomic structures of rutile TiO_2 (110) surface before and after optimization. (a) Before surface optimization; (b) after surface optimization

文献[18]表明气体分子容易吸附在含氧空位的 TiO₂表面上,因此构建了H₂分子吸附在含氧空位的 TiO₂表面(模型a)、非金属C掺杂含氧空位的TiO₂表 面(模型b)、金属Mo掺杂含氧空位的TiO₂表面(模型 c)以及C、Mo共掺杂含氧空位的TiO₂表面(模型d)4 种模型。H₂分子与表面氧空位的初始距离均为 2.0Å,如图2所示。

3 结果与讨论

3.1 吸附距离及吸附能

优化后的H₂分子吸附于TiO₂(110)表面的原子结构如图3所示。

将 TiO₂ 表 面 吸 附 H₂ 的 吸 附 能 定 义 为 $E_{ads} = (E_{TiO_2} + E_{H_2}) - E_{TiO_2 + H_2}$,式中 E_{ads} 表示吸附能, E_{TiO_2} 表示 TiO₂(110)表面能量, E_{H_2} 表示 H₂分子能量, $E_{TiO_2 + H_2}$ 表示 H₂吸附于 TiO₂(110)表面的总能量^[19-20]。 E_{ads} 大 于零,表示吸附过程为放热过程,吸附后的整体结构更 加稳定; E_{ads} 小于零,则表示吸附过程为吸热过程,吸 附后的整体结构的能量更高,吸附过程不容易实现。

为了更直观地对比吸附优化前后 H₂与表面距离 的变化以及吸附能的大小,将4种表面的吸附模型相 关数据归纳于表1中。可以发现:在含氧空位的金红 石相 TiO₂(110)表面,4种模型的H₂分子与表面的距离 均较初始距离减小,且吸附能均为正值,说明4种模型

图 2 H₂分子吸附于 TiO₂(110)表面的原子结构。(a)含氧空位;(b)单C掺杂;(c)单Mo掺杂;(d)C、Mo共掺 Fig. 2 Atomic structures of rutile TiO₂(110) surface adsorption H₂. (a) With oxygen vacancy; (b) C doping; (c) Mo doping; (d) C and

图 3 优化后 H₂分子吸附于 TiO₂(110)表面的原子结构。(a)含氧空位;(b)单C掺杂;(c)单 Mo掺杂;(d) C 和 Mo共掺 Fig. 3 Atomic structures of H₂ adsorption on rutile TiO₂ (110) surface after optimization. (a) With oxygen vacancy; (b) C doping; (c) Mo doping; (d) C and Mo co-doping

下,H₂均容易被TiO₂(110)表面吸附。

表1 金红石相 TiO₂(110)表面吸附 H₂的距离和吸附能 Table 1 Distance and adsorption energy of H₂ adsorbed on rutile TiO₂ (110) surface

1102 (110) bullace								
Model	Initial	Distance before	Adsorption					
	distance /Å	optimization /Å	energy /eV					
а	2.0	1.36	0.18					
b	2.0	1.82	0.15					
с	2.0	1.22	0.19					
d	2.0	1.92	0.08					

3.2 Mulliken 电荷分布

H₂属于非极性分子,键长为0.74Å。表2列出了 H₂分子吸附于4种模型的Mulliken电荷分布。可以看 出4种模型中,H₂分子的布居数均增加了。模型a中, 有0.07个电子电荷从TiO₂表面向H₂分子发生转移, H₂被表面还原,分子键长被拉长了0.015Å。模型b 中,有0.05个电子电荷从TiO₂表面向H₂分子发生转 移,H₂被表面还原,分子键长被拉长了0.013Å。模型 c中,有0.08个电子电荷从TiO₂表面向H₂分子发生转 移, H_2 被表面还原,分子键长被拉长了0.012Å。模型 d中,有0.05个电子电荷从TiO₂表面向 H_2 分子发生转 移, H_2 被表面还原,分子键长被拉长了0.010Å。4种 模型吸附 H_2 的本质均为TiO₂(110)表面将 H_2 还原。

3.3 表面电子态密度

金红石相 TiO₂(110)表面吸附 H₂的态密度如图 4 所示,能量零点表示费米能级。TiO₂的禁带宽度为 3.0 eV,价带由O的 2p轨道和Ti的 3d轨道构成,导带 由 Ti的 3d轨道构成。氧空位的出现使得费米能级附 近形成了新的能级,其单元电子态密度约为 4.0 eV⁻¹, 如图 4(a)所示。当C与Mo分别掺杂 TiO₂表面且吸附 H₂后,费米能级附近分别形成了由C的 2p轨道与Mo 的 4d轨道构成的新的杂质能级,电子态密度分别为 6.8 eV⁻¹与 7.6 eV⁻¹,分别如图 4(b)、(c)所示。当C 和 Mo共掺杂 TiO₂表面吸附 H₂后,费米能级附近形成 了由C的 2p与Mo的4d轨道叠加构成新的杂质能级, 电子态密度达到约 11.4 eV⁻¹,如图 4(d)所示。C掺杂 在费米能级附近形成的受主能级太Mo掺杂在费米能 级附近形成的施主能级和受主能级均能为电子在禁带 中的跃迁提供中间"阶梯"。禁带中的这些杂质能级可

第 42 卷 第 22 期/2022 年 11 月/光学学报

Model	Туре	s electron	Total number / electron	Change / electron	Molecular charge /electron	Population number	Bond length /Å			
H_2	Н	1.00	1.00	0	0	0.88	0.740			
	Н	1.00	1.00	0						
a	Н	1.15	1.15	-0.15	-0.07	0.96	0.755			
	Н	0.92	0.92	0.08						
b	Н	1.10	1.10	-0.10	-0.05	0.94	0.753			
	Н	0.95	0.95	0.05						
с	Н	1.17	1.17	-0.17	-0.08	0.97	0.752			
	Н	0.91	0.91	0.09						
d	Н	1.09	1.09	-0.09	-0.05	0.94	0.750			
	Н	0.96	0.96	0.04						

表 2 H_2 分子的 Mulliken 电荷分布 Table 2 Mulliken charge distribution of H_2 molecule

以诱导光生电子与空穴的分离,改善表面的光学性质。 比较4种模型发现:当C和Mo共掺TiO₂表面吸附H₂ 时,C和Mo在费米能级附近构成新的杂质能级,费米 能级附近的电子态密度值最大。由此推断,C和Mo共 掺时TiO₂表面吸附H₂的光学性能效果更佳。

3.4 介电函数、吸收谱和反射谱

为了验证通过态密度分析得出的光学性能的推断,分别计算了TiO₂材料的介电函数、吸收谱和反射 谱。电子吸收光子能量由低能级向高能级跃迁时会受 到辐射电场的微扰。但是电子跃迁能量远大于声子扰 动的能量,因此可以用介电函数来描述TiO₂材料的光 学性质。介电函数的实部与虚部是描述材料吸收与释 放光子过程的函数,其复数形式 $\epsilon(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$ 描述的是电子跃迁过程,式中 $\epsilon_1 \approx \epsilon_2$ 分别表示为 $\epsilon_1 = n^2 - k^2$ (*n*和 *k*分别为折射率的实部和虚部), $\epsilon_2 = 2nk^{[21]}$ 。根据Kramers-Kronig色散关系可以推导 得出介电函数的实部与虚部,进而还能推导出吸收系数 $I(\omega)$ 、反射率 $R(\omega)$ 和能量损失函数 $L(\omega)^{[22-23]}$:

$$\varepsilon_{1} = 1 + \frac{8\pi^{2}e^{2}}{m^{2}} \sum_{\mathrm{v,c}} \int \mathrm{d}^{3} k \frac{2}{2\pi} \times \frac{|e \cdot M_{\mathrm{CV}}(K)|^{2}}{\left[E_{\mathrm{c}}(K) - E_{\mathrm{v}}(K)\right]} \times \frac{\hbar^{3}}{\left[E_{\mathrm{c}}(K) - E_{\mathrm{v}}(K) - \hbar^{2}\omega^{2}\right]}, \qquad (1)$$

$$\varepsilon_{2} = \frac{4\pi^{2}}{m^{2}\omega^{2}} \sum_{\mathrm{v,c}} \int_{B_{z}} \mathrm{d}^{3} k \frac{2}{2\pi} |e \cdot M_{\mathrm{cv}}(K)|^{2} \times \delta \left[E_{\mathrm{c}}(K) - E_{\mathrm{v}}(K) - \hbar\omega\right], \qquad (2)$$

$$I(\omega) = \frac{\sqrt{2} \omega}{c} \sqrt{-\varepsilon_1(\omega) + \sqrt{\varepsilon_1^2(\omega) + \varepsilon_2^2(\omega)}}, \quad (3)$$
$$R(\omega) = \left| \frac{\sqrt{\varepsilon_1(\omega) + i\varepsilon_2(\omega)} - 1}{\sqrt{\varepsilon_1(\omega) + i\varepsilon_2(\omega)} + 1} \right|^2, \quad (4)$$

$$L(\boldsymbol{\omega}) = \frac{\boldsymbol{\varepsilon}_{2}(\boldsymbol{\omega})}{\boldsymbol{\varepsilon}_{1}^{2}(\boldsymbol{\omega}) + \boldsymbol{\varepsilon}_{2}^{2}(\boldsymbol{\omega})}, \qquad (5)$$

式中:C、V分别代表导带、价带;K代表倒格矢; ω 代表 角频率, B_z 表示第一布里渊区, $|e \cdot M_{cv}(K)|^2$ 代表动量 跃迁矩阵元, $E_c(K)$ 、 $E_v(K)$ 分别代表导带、价带的本 征能级。

介电函数的虚部 ϵ_2 取决于电子在导带与价带之间 的带间跃迁, ϵ_2 的数值越大,说明发生跃迁的概率越高,形成激子的数量也就越多,材料的光学性能越好。 图 5为金红石相 TiO₂(110)表面在可见光 380~780 nm 范围内的介电函数虚部。可以看出:未掺杂的材料表 面的介电函数虚部数值整体较低,最大值为 700 nm 处 的 0.3左右;单C掺杂与单 Mo掺杂均能提高材料表面 的介电函数虚部值,其最大值分别为 780 nm 处的 1.2 和 1.8左右;而 C、Mo 共掺提高材料表面介电函数虚 部值的效果最佳,在 780 nm 处最大值能达到 2.2左 右,是未掺杂表面数值的 7 倍多。4 种模型的介电函数 虚部值顺序从大到小依次为:C、Mo 共掺,单 Mo 掺杂, 单C掺杂,未掺杂。

图 5 TiO₂(110)表面的介电函数虚部 Fig. 5 Imaginary part of dielectric function on TiO₂ (110) surface

金红石相 TiO₂(110)表面的吸收谱和反射谱分别 如图 6(a)、(b)所示。掺杂前在可见光 380~780 nm范 围内,TiO₂(110)表面的吸收谱和反射谱的数值整体都 偏低。吸收系数峰值出现在 620 nm 处,约为 5000 cm⁻¹;反射率峰值出现在 780 nm 处,约为 0.02。 单C掺杂与单 Mo掺杂均能不同程度地改善材料的光 学性能。而C和 Mo共掺下 TiO₂(110)表面的吸收谱 和反射谱的数值得到了极大的增大。吸收系数峰值在 620 nm 处达到约为 25000 cm⁻¹,较未掺杂表面数值提 高了约5倍。反射率峰值在 660 nm 处达到约 0.12,较 未掺杂表面数值提高了约6倍。

图 6 TiO₂(110)表面的吸收谱和反射谱。(a)吸收谱;(b)反射谱 Fig. 6 Absorption spectrum and reflection spectrum of TiO₂(110) surface. (a) Absorption spectrum; (b) reflection spectrum

通过对 TiO₂(110)表面掺杂前后的介电函数、吸 收谱和反射谱进行比较分析,可以发现:掺入杂质均能 不同程度地改善材料表面的光学性能。这是因为掺杂 在费米能级附近形成的新的杂质能级为电子跃迁提供 中间"阶梯",C、Mo共掺,单Mo掺杂,单C掺杂材料的 光学性能依次降低。光学性质的计算结果与态密度分 析结果一致。

4 结 论

采用基于密度泛函理论体系下的第一性原理平面 波超软赝势方法,研究了H₂在TiO₂(110)表面吸附的微 观机制和光学特性。结果表明:单C、单Mo以及C、Mo 共掺杂的金红石相TiO₂(110)表面均容易吸附H₂;吸附 的本质为TiO₂(110)表面将H₂还原,属于化学吸附;单 C掺杂和单Mo掺杂均能在TiO₂的费米能级附近形成 新的杂质能级,诱导光生电子与空穴的分离,为电子在 禁带中的跃迁提供中间"阶梯",改善材料表面的光学性 质。但是C、Mo共掺时,其协同作用对改善材料表面的 光学性能效果最佳,吸收系数和反射率峰值较未掺杂 时分别提高了约5倍和6倍。C、Mo共掺,单Mo掺杂, 单C掺杂材料的光学性能依次降低。本工作加深了人 们对TiO₂(110)表面吸附H₂过程的理解,也能为制备 基于TiO₂材料的H₂传感器提供理论支持。

参考文献

[1] Rincón R, Muñoz J, Morales-Calero F J, et al.

研究论文

Assessment of two atmospheric-pressure microwave plasma sources for H_2 production from ethanol decomposition[J]. Applied Energy, 2021, 294: 116948.

- [2] Joy O, Al-Zaili J. On effectiveness of current energy policy instruments to make H₂ production projects financially viable for developers: case of the UK[J]. International Journal of Hydrogen Energy, 2021, 46(65): 32735-32749.
- [3] Hu C C, Chiu W L, Wang C Y, et al. Freeze-dried dicyandiamide-derived $g-C_3N_4$ as an effective photocatalyst for H_2 generation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 129: 128-134.
- [4] Ahmad M S, Ali M S, Rahim N A. Hydrogen energy vision 2060: hydrogen as energy carrier in Malaysian primary energy mix-developing P2G case[J]. Energy Strategy Reviews, 2021, 35: 100632.
- [5] Haggi H, Sun W, Fenton J M, et al. Risk-averse cooperative operation of PV and hydrogen systems in active distribution networks[J]. IEEE Systems Journal, 2022, 16(3): 3972-3981.
- [6] Paolucci V, de Santis J, Lozzi L, et al. Layered amorphous a-SnO₂ gas sensors by controlled oxidation of 2D-SnSe₂[J]. Sensors and Actuators B: Chemical, 2022, 350: 130890.
- [7] Kumar M, Bhati V S, Ranwa S, et al. Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen[J]. Scientific Reports, 2017, 7: 236.
- [8] 闫宇星, 汪帆, 夏文智, 等.本征缺陷对锐钛矿 TiO₂光
 电特性影响的第一性原理研究[J].稀有金属, 2022, 46
 (2): 195-205.

Yan Y X, Wang F, Xia W Z, et al. First principles study of photoelectric properties of anatase TiO_2 with intrinsic defects[J]. Chinese Journal of Rare Metals, 2022, 46(2): 195-205.

- [9] Wang K, He S H, Lin Y Z, et al. Photo-enhanced thermal catalytic CO₂ methanation activity and stability over oxygen-deficient Ru/TiO₂ with exposed TiO₂{001} facets: adjusting photogenerated electron behaviors by metal-support interactions[J]. Chinese Journal of Catalysis, 2022, 43(2): 391-402.
- [10] Benten H, Kudo N, Ohkita H, et al. Layer-by-layer deposition films of copper phthalocyanine derivative; their photoelectrochemical properties and application to solution-processed thin-film organic solar cells[J]. Thin Solid Films, 2009, 517(6): 2016-2022.
- [11] 朱洪强,冯庆,岳远霞,等.金红石相TiO₂(110)面吸附H₂S分子光学气敏效应的微观机制与特性[J].中国激光,2014,41(12):1206001.
 Zhu H Q, Feng Q, Yue Y X, et al. Microscopic mechanism and characteristics of optical gas sensing material rutile titanium dioxide (110) surface adsorption H₂S molecules[J]. Chinese Journal of Lasers, 2014, 41 (12): 1206001.
- [12] Li X H, Li J X, Zhai H J, et al. Efficient catalytic fixation nitrogen activity under visible light by molybdenum doped mesoporous TiO₂[J]. Catalysis

第 42 卷 第 22 期/2022 年 11 月/光学学报

Letters, 2022, 152(1): 116-123.

- [13] Takeuchi M, Martra G, Coluccia S, et al. Investigations of the structure of H₂O clusters adsorbed on TiO₂ surfaces by near-infrared absorption spectroscopy[J]. The Journal of Physical Chemistry B, 2005, 109(15): 7387-7391.
- [14] 朱洪强,冯庆,周晴,等.SP³杂化的气体分子在金红石相二氧化钛(110)面吸附规律与特性[J].中国科学:物理学力学天文学,2015,45(7):077301.
 ZhuHQ,FengQ,ZhouQ,etal.A study on adsorption law and characteristics of SP³ hybrid gas molecules in the rutile titanium dioxide (110) surface[J]. Scientia Sinica (Physica, Mechanica&Astronomica),2015,45(7):077301.
- [15] 朱洪强,冯庆.光学气敏材料金红石相二氧化钛(110)面 吸附 CO 分子的微观特性机理研究[J].物理学报,2014,63(13):133101.

Zhu H Q, Feng Q. Microscopic characteristics mechanism of optical gas sensing material rutile titanium dioxide (110) surface adsorption of CO molecules[J]. Acta Physica Sinica, 2014, 63(13): 133101.

- [16] Orhan O K, O'Regan D D. First-principles Hubbard U and Hund's J corrected approximate density functional theory predicts an accurate fundamental gap in rutile and anatase TiO₂[J]. Physical Review B, 2020, 101(24): 245137.
- [17] 朱洪强, 冯庆. 金红石相 TiO₂(110)面对 NH₃吸附的微观 机制和光学气敏特性研究[J]. 光学学报, 2014, 34(10): 1016002.
 Zhu H Q, Feng Q. A study on microscopic mechanism and optical gas sensing material characteristics of rutile

titanium dioxide (110) surface adsorption NH₃ molecules [J]. Acta Optica Sinica, 2014, 34(10): 1016002.

- [18] 非胜霄,冯庆,陈杨,等.N/Rh共掺杂金红石 TiO₂表面 对 CO 气体光学气敏传感特性的影响[J].中国激光,2019,46(11):1103003.
 Fei S X, Feng Q, Chen Y, et al. Effect of surface oxidation on optical CO gas-sensing characteristics of N/Rh-codoped rutile TiO₂[J]. Chinese Journal of Lasers, 2019,46(11):1103003.
- [19] Chen R X, Yan L B, Lin L, et al. Coadsorption of CO and CH₄ on the Au doped SnO₂ (110) surface: a first principles investigation[J]. Physica Scripta, 2022, 97(4): 045403.
- [20] Zhou X Y, Tao T Y, Bao Y W, et al. Dynamic reaction mechanism of P-N-switched H₂-sensing performance on a Pt-decorated TiO₂ surface[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25472-25482.
- [21] Tong Z, Dumitrică T, Frauenheim T. First-principles prediction of infrared phonon and dielectric function in biaxial hyperbolic van der Waals crystal α-MoO_s[J]. Physical Chemistry Chemical Physics, 2021, 23(35): 19627-19635.
- [23] Jiang L, Tsai H L. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics[J]. Journal of Applied Physics, 2008, 104(9): 093101.